Acta Crystallographica Section E

Structure Reports

Online

Di- μ-sulfato-bis[aqua(dipyridophenazine)copper(II)] dihydrate

ISSN 1600-5368

Yong-Ke He and Zheng-Bo Han*

School of Chemical Science and Engineering, Liaoning University, Shenyang 110036, People's Republic of China

Correspondence e-mail: ceshzb@lnu.edu.cn

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.004 \AA$
R factor $=0.039$
$w R$ factor $=0.117$
Data-to-parameter ratio $=12.0$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

The title compound, $\left[\mathrm{Cu}_{2}\left(\mathrm{SO}_{4}\right)_{2}\left(\mathrm{C}_{18} \mathrm{H}_{10} \mathrm{~N}_{4}\right)_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right] \cdot 2 \mathrm{H}_{2} \mathrm{O}$, has a discrete binuclear structure lying on a centre of symmetry. The Cu atom shows a square-pyramidal coordination geometry. There exist $\pi-\pi$ stacking interactions and hydrogen bonds between the complex molecules.

Comment

Dipyridophenazine derivatives are usually used as molecular light switches for DNA (Hartshorn \& Barton, 1992) and for the study of fast electron transfer through DNA (Murphy et al., 1993). A ruthenium(II) complex with dipyridophenazine has been found to be a good cleavage agent with high affinity for DNA (Gupta et al., 1992). In our previous work, we reported a binuclear copper(II) complex of dipyridophenazine bridged by two Cl atoms (Han, 2006). We report here a new binuclear copper(II) complex, (I), of dipyridophenazine bridged by two sulfate groups.

(I)

Complex (I) has a discrete binuclear structure lying on a centre of symmetry. The asymmetric unit consists of one dipyridophenazine ligand, one sulfate ion, one coordinated aqua ligand, one Cu atom and one uncoordinated water

Figure 1
The molecular structure of (I). Displacement ellipsoids are drawn at the 30% probability level. H atoms and the uncoordinated water molecules have been omitted for clarity. [Symmetry code: (i) $1-x,-y, 1-z$.]

Figure 2
Crystal packing in (I), showing $\pi-\pi$ stacking interactions and hydrogen bonds (dashed lines).
molecule (Table 1 and Fig. 1). Two μ-sulfato groups bridge two Cu atoms to form a binuclear complex unit.

The planar dipyridophenazine ligands from adjacent binuclear units at (x, y, z) and $\left(x,-y+\frac{1}{2}, z-\frac{1}{2}\right)$ furnish strong $\pi-\pi$ stacking interactions, with an average plane-to-plane separation of $3.36 \AA$ (Zheng et al., 2001). In addition, there are intra- and intermolecular hydrogen bonds involving the water molecules, the O atoms of sulfates and the N atoms of dipyridophenazine ligands (Table 2). The $\pi-\pi$ interactions and hydrogen bonds stabilize the complex and link the binuclear units to form a supramolecular framework (Fig. 2).

Experimental

A mixture of $\mathrm{CuSO}_{4} \cdot 5 \mathrm{H}_{2} \mathrm{O}(0.5 \mathrm{mmol}, 0.125 \mathrm{~g})$, dipyridophenazine $(0.5 \mathrm{mmol}, 0.141 \mathrm{~g})$ and water (10 ml) was sealed in a 23 ml Teflonlined reactor, which was heated at 453 K for 6 d and then cooled to room temperature at a rate of $5 \mathrm{~K} \mathrm{~h}^{-1}$ (yield 42%). Analysis, calculated for $\mathrm{C}_{36} \mathrm{H}_{28} \mathrm{Cu}_{2} \mathrm{~N}_{8} \mathrm{O}_{12} \mathrm{~S}_{2}$: C 45.23, H 2.95, N 11.72\%; found: C 45.58, H $2.86, \mathrm{~N} 11.83 \%$.

Crystal data

$\left[\mathrm{Cu}_{2}\left(\mathrm{SO}_{4}\right)_{2}\left(\mathrm{C}_{18} \mathrm{H}_{10} \mathrm{~N}_{4}\right)_{2^{-}}\right.$ $\left.\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\right] \cdot 2 \mathrm{H}_{2} \mathrm{O}$
$M_{r}=955.86$
Monoclinic, $P 2_{1} / c$
$a=9.6401$ (9) А
$b=26.670$ (3) \AA
$c=7.0304$ (7) A
$\beta=105.145$ (2) ${ }^{\circ}$

Data collection

Bruker SMART APEX areadetector diffractometer φ and ω scans
Absorption correction: multi-scan (SADABS; Sheldrick, 1996) $T_{\text {min }}=0.558, T_{\text {max }}=0.845$

$$
\begin{aligned}
& V=1744.8(3) \AA^{3} \\
& Z=2 \\
& D_{x}=1.819 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \text { Mo } K \alpha \text { radiation } \\
& \mu=1.42 \mathrm{~mm}^{-1} \\
& T=293(2) \mathrm{K} \\
& \text { Block, green } \\
& 0.47 \times 0.32 \times 0.12 \mathrm{~mm}
\end{aligned}
$$

8062 measured reflections 3391 independent reflections
3041 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.023$
$\theta_{\text {max }}=26.0^{\circ}$

Refinement

Refinement on F^{2}

$$
\begin{gathered}
w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.072 P)^{2}\right. \\
\quad+1.1351 P] \\
\text { where } P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}^{2}\right) / 3 \\
(\Delta / \sigma)_{\max }<0.001 \\
\Delta \rho_{\max }=0.53 \mathrm{e}^{-3} \\
\Delta \rho_{\min }=-0.43 \mathrm{e}^{-3}
\end{gathered}
$$

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.039$
$w R\left(F^{2}\right)=0.118$
$S=1.04$
$S=1.04$
3391 reflections

283 parameters
H atoms treated by a mixture of independent and constrained refinement

Table 1
Selected geometric parameters $\left(\AA,{ }^{\circ}\right)$.

$\mathrm{Cu} 1-\mathrm{O} 3$	$1.949(2)$	$\mathrm{Cu} 1-\mathrm{N} 2$	$2.021(2)$
$\mathrm{Cu} 1-\mathrm{O} 1 W$	$1.963(2)$	$\mathrm{Cu} 1-\mathrm{O} 1^{\mathrm{i}}$	$2.218(3)$
$\mathrm{Cu} 1-\mathrm{N} 1$	$2.014(2)$		
$\mathrm{O} 3-\mathrm{Cu} 1-\mathrm{O} 1 W$	$94.22(9)$	$\mathrm{N} 1-\mathrm{Cu} 1-\mathrm{N} 2$	$81.26(9)$
$\mathrm{O} 3-\mathrm{Cu} 1-\mathrm{N} 1$	$90.09(10)$	$\mathrm{O} 3-\mathrm{Cu} 1-\mathrm{O} 1^{\mathrm{i}}$	$98.98(10)$
$\mathrm{O} 1 W-\mathrm{Cu} 1-\mathrm{N} 1$	$167.94(10)$	$\mathrm{O} 1 W-\mathrm{Cu} 1-\mathrm{O} 1^{\mathrm{i}}$	$92.55(10)$
$\mathrm{O} 3-\mathrm{Cu} 1-\mathrm{N} 2$	$170.56(10)$	$\mathrm{N} 1-\mathrm{Cu} 1-\mathrm{O} 1^{\mathrm{i}}$	$97.90(11)$
$\mathrm{O} 1 W-\mathrm{Cu} 1-\mathrm{N} 2$	$93.53(9)$	$\mathrm{N} 2-\mathrm{Cu} 1-\mathrm{O} 1^{\mathrm{i}}$	$86.03(9)$

Symmetry code: (i) $-x+1,-y,-z+1$.

Table 2
Hydrogen-bond geometry ($\AA,{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
O1 $^{2} W-\mathrm{H} 1 W A \cdots$ O $^{\text {ii }}$	$0.864(18)$	$1.745(19)$	$2.608(3)$	$177(4)$
O1 $W-\mathrm{H} 1 W B \cdots \mathrm{O} 4$	$0.859(18)$	$1.81(2)$	$2.649(3)$	$164(4)$
O2W-H2WA $\cdots \mathrm{N} 3$	$0.85(2)$	$2.28(3)$	$3.098(4)$	$160(7)$
O2 $W-\mathrm{H} 2 W B \cdots \mathrm{O} 4^{\text {iii }}$	$0.85(2)$	$1.97(3)$	$2.806(4)$	$168(7)$
Symmetry codes: (ii) $-x+1,-y,-z ;$ (iii) $-x+1, y+\frac{1}{2},-z+\frac{1}{2}$.				

H atoms of the aromatic rings were positioned geometrically and refined as riding, with $\mathrm{C}-\mathrm{H}=0.93 \AA$ and $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C}) . \mathrm{H}$ atoms of water molecules were located in difference Fourier maps and refined with a single isotropic displacement parameter for each water molecule $\left[U_{\text {iso }}(\mathrm{H})=1.5 U_{\text {eq }}(\mathrm{O})\right]$, with distance restraints of $\mathrm{O}-$ $\mathrm{H}=0.85$ (1) \AA and $\mathrm{H} \cdots \mathrm{H}=1.39$ (1) \AA.

Data collection: SMART (Bruker, 2001); cell refinement: SAINT (Bruker, 2001); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL (Bruker, 2001); software used to prepare material for publication: SHELXTL.

The authors thank the Program for Liaoning Excellent Talents in Universities for supporting this work (RC-05-11).

References

Bruker (2001). SAINT, SMART and SHELXTL. Bruker AXS Inc., Madison, Wisconsin, USA.
Gupta, N., Grover, N., Neyhart, G. A., Liang, W., Singh, P. \& Thorp, H. H. (1992). Angew. Chem. Int. Ed. Engl. 31, 1048-1050.

Han, Z.-B. (2006). Acta Cryst. E62, m2059-m2060.
Hartshorn, R. M. \& Barton, J. K. (1992). J. Am. Chem. Soc. 114, 5919-5925.
Murphy, C. J., Arkin, M. R., Jenkins, Y., Ghatlia, N. D., Bossmann, S. H., Turro, N. J. \& Barton, J. K. (1993). Science, 262, 1025-1029.

Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Zheng, S.-L., Tong, M.-L., Fu, R.-W. \& Chen, X.-M. (2001). Inorg. Chem. 40, 3562-3569.

